The Internet's Biggest BGP Incidents

A Brief History

Justin Ryburn Field CTO

Who's this guy?

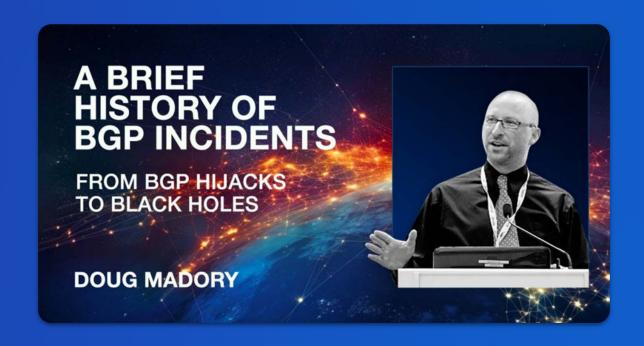
Current

Field CTO - Kentik

Past

25 years in networking Ran networks (including peering) before migrating to the vendor side

More details


Credit Where Due

Talk based on the work of Doug Madory, "The Man Who Sees the Internet"

Great resource to follow on social media for news on this topic.

BGP Incident Definitions

Hijacks

- Prefix hijacking happens when a network, whether intentionally or mistakenly, originates a prefix that belongs to another network without its permission. [MANRS]
- Presumes malicious intent
- Generally used to describe an illegitimate origination of a prefix

Route Leaks

- A route leak is the propagation of routing announcement(s) beyond their intended scope. [RFC7908]
- Often occur accidentally due to configuration errors
- Malicious actors may also attempt to hide attacks as a leak
- Generally used to describe a leak of prefixes upstream for the legitimate origin of the prefix

Even experts debate the definitions

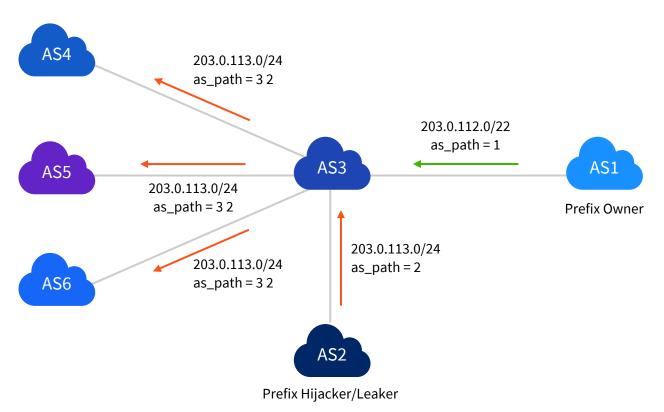
Definitions for Our Purposes

Origination Errors

- Occurs when an AS
 originates (announces
 with its ASN as the origin)
 a new advertisement of a
 route to an IP address
 block over which it does
 not possess legitimate
 control
- Solicits traffic destined to those IP addresses to the new ASN

AS Path Errors

- Occurs when an AS inserts itself as an illegitimate intermediary into the forwarding path of traffic bound for a different destination
- Traffic may still reach its ultimate destination, albeit along a sub-optimal path

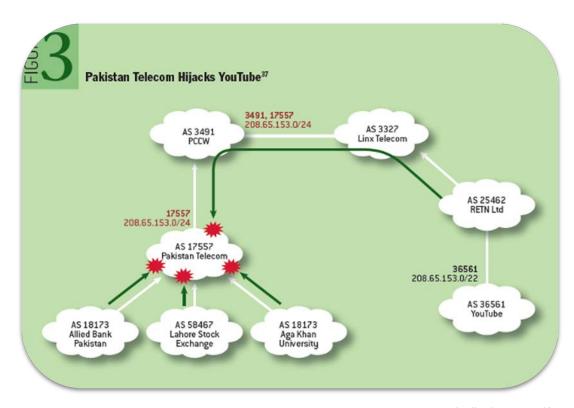

IP Squatting

- Occurs when an AS

 announces IP address
 ranges that are normally
 unrouted on the global

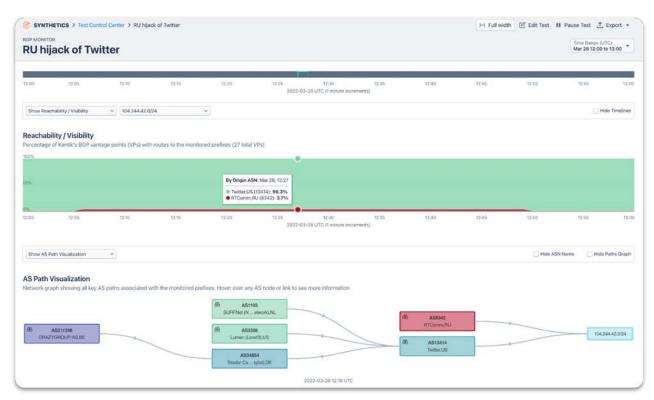
 Internet
- Typically for the purpose of evading IP-based blocklists and complicating attribution

Origination Error

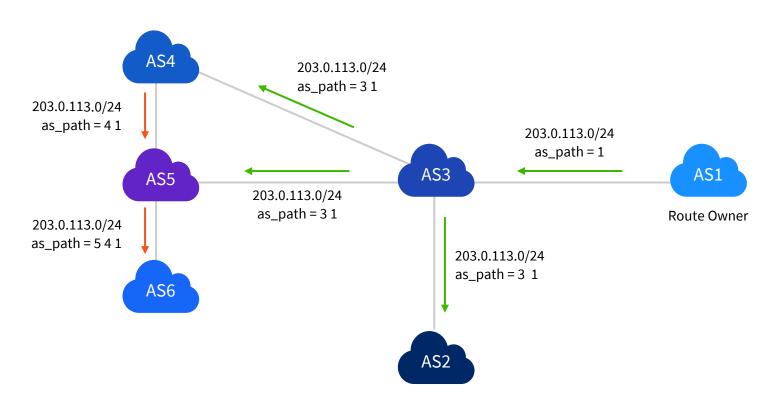


Pakistan Telecom Hijack of YouTube (2008)

- Government of Pakistan
 ordered access to YouTube to
 be blocked in the country due
 to a video it deemed anti Islamic
- Pakistan Telecom intended to blackhole traffic inside their network
- Leaked it to their upstream providers


Image source:

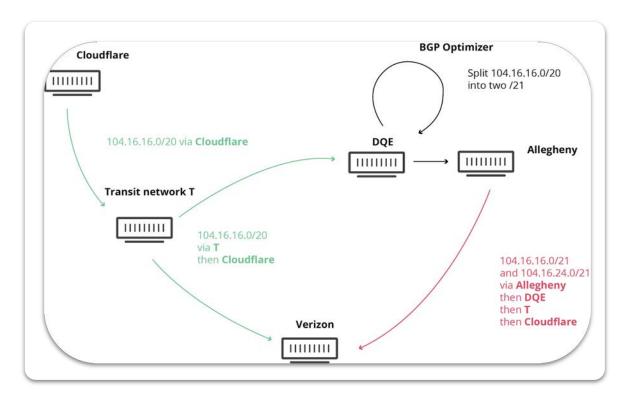
https://dl.acm.org/doi/fullHtml/10.1145/2668152. 2668966



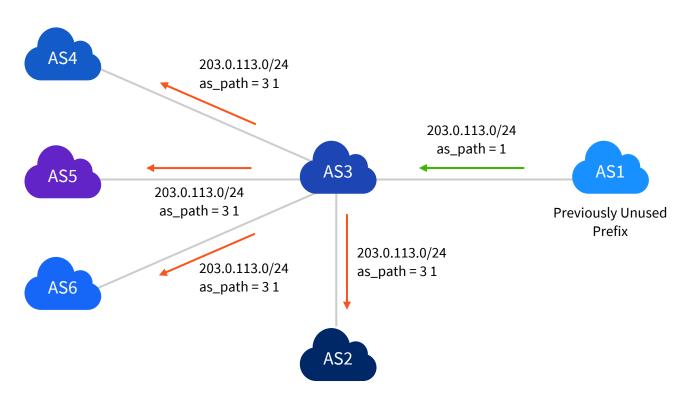
Russian Hijack of Twitter (2022)

- Twitter prefix
 (104.244.42.0/24)
 announced by Russian
 Telecom RTComm
 during the Russian
 invasion of the
 Ukraine
- Same prefix was hijacked during the military coup in Myanmar in 2021
- Less propagation this time due to RPKI ROA

AS Path Error

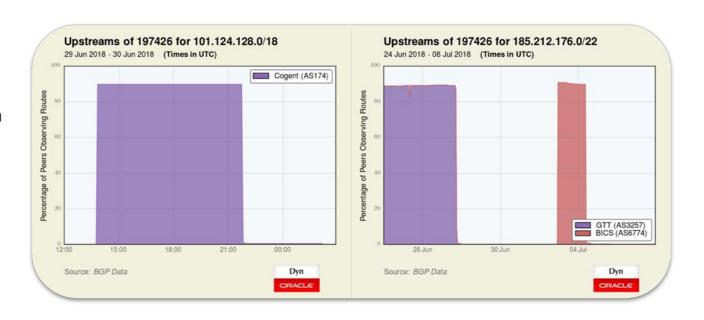


AS7007 Incident (1997)


- The OG of BGP Incidents
- Code bug caused a router inside AS7007 (MAI Network Services) to leak routes to the Internet
- Existing prefixes de-aggregated to /24 prefixes and originated from AS7007
- Routes remained even after the originating router had been taken offline

Allegheny Leak (2019)

- BGP Optimizer inside DQE split 104.16.16.0/20 into two /21 prefixes
- Advertised those routes to their customer, Allegheny
- Allegheny in turn advertised upstream to Verizon
- BGP prefers a /21 over a /20 so all of the Internet connected to Verizon preferred the route through DQE



IP Squatting

Bitcanal

- IP Squatting on 101.124.128.0/18 until Cogent disconnected them
- Then moved to 185.212.176.0/22 via GTT and BICS
- Used IPs as source of spam to avoid IP Blacklist

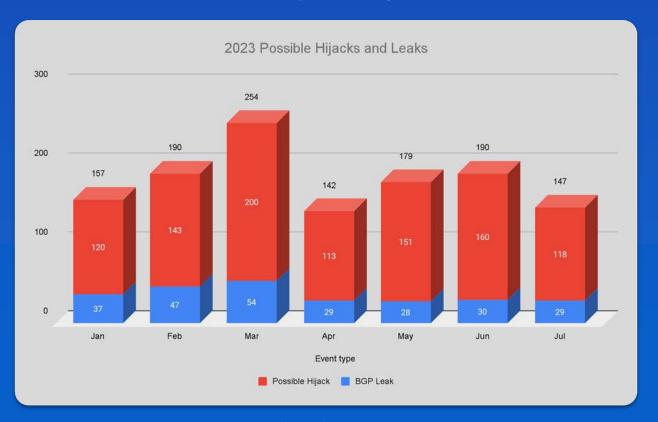
Impact of a BGP Incident

Disrupt the flow of legitimate internet traffic

Nation state control on flow of information

Misdirection of communications

Security risk from interception or manipulation


Attacks on cryptocurrency services

BGP session flaps

Not covered here but unknown BGP attributes also affect the stability of the global routing table

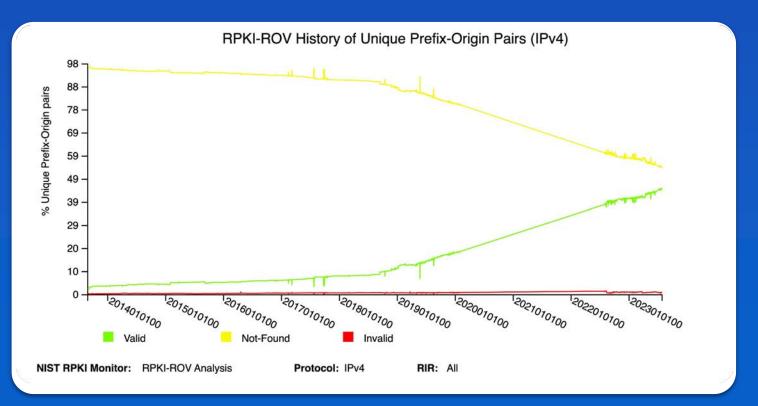
Frequency

Source: https://bgpstream.com

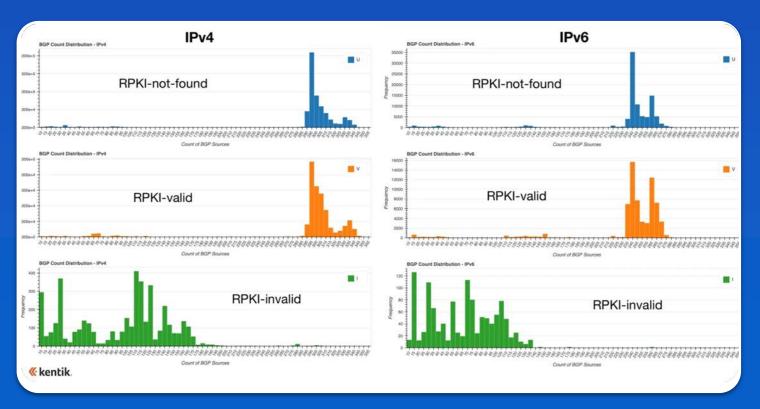
What can operators do?

Watch BGP monitoring solutions to respond quickly

RPKI ROV by creating ROAs for your prefixes



Configure your routers to reject RPKI Invalid routes



Mutually Agreed Norms for Routing Security (MANRS)

We are making progress

We are making progress

Additional Resources

- A Brief History of the Internet's Biggest BGP Incidents https://www.kentik.com/blog/a-brief-history-of-the-internets-biggest-bgp-incidents/
- AS7007 Incident https://en.wikipedia.org/wiki/AS_7007_incident
- Pakistan's Accidental YouTube Re-Routing Exposes Trust Flaw in Net https://www.wired.com/2008/02/pakistans-accid/
- How Verizon and a BGP Optimizer Knocked Large Parts of the Internet Offline Today https://blog.cloudflare.com/how-verizon-and-a-bgp-optimizer-knocked-large-parts-of-the-internet-offline-today/
- Some Twitter traffic briefly funneled through Russian ISP, thanks to BGP mishap https://arstechnica.com/information-technology/2022/03/absence-of-malice-russian-isps-hijacking-of-twitter-ips-appears-to-be-a-goof/
- Shutting Down the BGP Hijack Factory https://blog.apnic.net/2018/07/12/shutting-down-the-bgp-hijack-factory/
- MANRS https://www.manrs.org/
- How much does RPKI ROV reduce the propagation of invalid routes? https://www.kentik.com/blog/how-much-does-rpki-rov-reduce-the-propagation-of-invalid-routes/
- Exploring the Latest RPKI ROV Adoption Numbers https://www.kentik.com/blog/exploring-the-latest-rpki-rov-adoption-numbers/
- Problem Definition and Classification of BGP Route Leaks https://www.ietf.org/rfc/7908.txt
- BGP Operations and Security https://www.ietf.org/rfc/rfc7454.txt
- Autonomous System Provider Authorization (ASPA) https://www.ietf.org/archive/id/draft-ietf-sidrops-aspa-verification-15.txt
- Unknown Attribute 23 https://labs.ripe.net/author/emileaben/unknown-attribute-28-a-source-of-entropy-in-interdomaig-keutiting rights reserved | 19

Questions?

Thank you!

Justin Ryburn jryburn@kentik.com

@JustinRyburn

in/justinryburn

<u>Join Kentik on Slack</u>

